Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions
نویسندگان
چکیده
منابع مشابه
Generalized Q-functions and Dirichlet-to-neumann Maps for Elliptic Differential Operators
The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein ...
متن کاملOn the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
on the spectral properties of degenerate non-selfadjoint elliptic systems of differential operators
متن کامل
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملSpectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems
We consider elliptic operators A on a bounded domain, that are compact perturbations of a selfadjoint operator. We first recall some spectral properties of such operators: localization of the spectrum and resolvent estimates. We then derive a spectral inequality that measures the norm of finite sums of root vectors of A through an observation, with an exponential cost. Following the strategy of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2015
ISSN: 0001-8708
DOI: 10.1016/j.aim.2015.08.016